


Figure 3:

t-SNE visualizations of activations at various layers for the train-on-SOURCE-only baseline model

(top) and ADAN (bottom). The distributions of the two languages are brought much closer in ADAN as they are
represented deeper in the network (left to right) measured by the Averaged Hausdorff Distance (see text). The
green circles are two 5-star example reviews (shown below the figure) that illustrate how the distribution evolves

(zoom in for details).

translations of each other, and in fact may even
come from different domains. Therefore, the sep-
aration could potentially come from two sources:
the content divergence between the English and
Chinese reviews, and the language divergence of
how words are used in the two languages. To con-
trol for content divergence, we tried plotting (not
shown in figure) the average word embeddings of
1000 random Chinese reviews and their machine
translations into English using t-SNE, and surpris-
ingly the clear separation was still present. There
are a few relatively short reviews that reside close
to their translations, but the majority still form two
language islands. (The same trend persists when
we switch to a different set of pre-trained BWEs,
and when we plot a similar graph for English-
Arabic.) When we remove stop words (the most
frequent word types in both languages), the two
islands finally start to become slightly closer with
less clean boundaries, but the separation remains
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clear. We think this phenomenon is interesting,
and a thorough investigation is out of the scope of
this work. We hypothesize that at least in certain
distant language pairs such as English-Chinese’,
the divergence between languages may not only
be determined by word semantics, but also largely
depends on how words are used.

Furthermore, we can see in Figure 3b that
the distributional discrepancies between Chinese
and English are significantly reduced after pass-
ing through the joint feature extractor (F). The
learned features in ADAN bring the distribu-
tions in the two languages dramatically closer
compared to the monolingually trained baseline.
This is shown via the Averaged Hausdorff Dis-
tance (AHD, Shapiro and Blaschko, 2004), which
measures the distance between two sets of points.

"In a personal correspondence with Ahmed Elgohary, he
did not observe the same phenomenon between English and
French.



Model Random BilBOWA Zouetal. Model Accuracy Run time
DAN 21.66% 28.75% 29.11% DAN 4295%  0.127 (sliter)
DAN+MT  37.78% 38.17% 39.66% CNN 46.24%  0.554 (sliter)
ADAN 34.44% 40.51% 42.95% BiLSTM 44.55%  1.292 (s/iter)
BiLSTM+dotattn 46.41%  1.898 (s/iter)

Table 2: Model performance on Chinese with various
(B)WE initializations.

The AHD between the English and Chinese re-
views is provided for all sub-plots in Figure 3.

Finally, when looking at the last hidden layer
activations in the sentiment classifier of the base-
line model (Figure 3c), there are several notable
clusters of red dots (English data) that roughly cor-
respond to the class labels. These English clusters
are the areas where the classifier is the most con-
fident in making decisions. However, most Chi-
nese samples are not close to one of those clus-
ters due to the distributional divergence and may
thus cause degraded classification performance in
Chinese. On the other hand, the Chinese samples
are more in line with the English ones in ADAN,
which results in the accuracy boost over the base-
line model. In Figure 3, a pair of similar English
and Chinese 5-star reviews is highlighted to visu-
alize how the distribution evolves at various points
of the network. We can see in 3c that the high-
lighted Chinese review gets close to the “positive
English cluster” in ADAN, while in the baseline, it
stays away from dense English clusters where the
sentiment classifier trained on English data is not
confident to make predictions.

3.3.3 Impact of Bilingual Word Embeddings

In this section we discuss the effect of the bilin-
gual word embeddings. We start by initializ-
ing the systems with random word embeddings
(WEs), shown in Table 2. ADAN with random
WEs outperforms the DAN and mSDA baselines
using BWEs and matches the performance of the
LR+MT baseline (Table 1), suggesting that ADAN
successfully extracts features that could be used
for cross-lingual classification tasks without any
bitext. This impressive result vindicates the power
of adversarial training to reduce the distance be-
tween two complex distributions without any di-
rect supervision, which is also observed in other
recent works for different tasks (Zhang et al.,
2017; Lample et al., 2018).

With the introduction of BWEs (Column 2 and
3), the performance of ADAN is further boosted.
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Table 3: Performance and speed for various feature ex-
tractor architectures on Chinese.

Therefore, it seems the quality of the BWEs plays
an important role in CLSC. To investigate the
impact of the specific choice of BWEs, we also
trained 100d BilIBOWA BWEs (Gouws et al.,
2015) using the UN parallel corpus for Chinese.
All systems achieve slightly lower performance
compared to the pre-trained BWEs from Zou et al.
(2013), yet ADAN still outperforms other baseline
methods (Table 2), demonstrating that ADAN’s ef-
fectiveness is relatively robust with respect to the
choice of BWEs. We conjecture that all systems
show inferior results with BilBOWA, because it
does not require word alignments during training
as Zou et al. (2013) do. By only training on a
sentence-aligned corpus, BiIBOWA requires less
resources and is much faster to train, potentially at
the expense of quality.

3.3.4 Feature Extractor Architectures

As mentioned in §2.1, the architecture of ADAN’s
feature extractor is not limited to a Deep Averag-
ing Network (DAN), and one can choose differ-
ent feature extractors to suit a particular task or
dataset. While an extensive study of alternative ar-
chitectures is beyond the scope of this work, we in
this section present a brief experiment illustrating
that our adversarial framework works well with
other F architectures. In particular, we consider
two popular choices: i) a CNN (Kim, 2014) that
has a 1d convolutional layer followed by a single
fully-connected layer to extract a fixed-length vec-
tor; and ii) a Bi-LSTM with two variants: one that
takes the average of the hidden outputs of each to-
ken as the feature vector, and one with the dot at-
tention mechanism (Luong et al., 2015) that learns
a weighted linear combination of all hidden out-
puts.

As shown in Table 3, ADAN’s performance can
be improved by adopting more sophisticated fea-
ture extractors, at the expense of slower running
time. This demonstrates that ADAN’s language-
adversarial training framework can be successfully
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Figure 4: A grid search on k and lambda for ADAN
(right) and the ADAN-GRL variant (left). Numbers in-
dicate the accuracy on the Chinese development set.

used with other F choices.

3.3.5 ADAN Hyperparameter Stability

In this section, we show that the training of ADAN
is stable over a large set of hyperparameters, and
provides improved performance compared to the
standard ADAN-GRL.

To verify the superiority of ADAN, we conduct
a grid search over k£ and A, which are the two hy-
perparameters shared by ADAN and ADAN-GRL.
We experiment with k& € {1,2,4,8,16}, and A €
{0.00625,0.0125,0.025,0.05,0.1,0.2,0.4,0.8}.
Figure 4 reports the accuracy on the Chinese dev
set for both ADAN variants, and shows higher
accuracy and greater stability over the Ganin and
Lempitsky (2015) variant. This suggests that
ADAN overcomes the well-known problem that
adversarial training is sensitive to hyperparameter
tuning.

3.4 Implementation Details

For all our experiments on both languages, the fea-
ture extractor F has three fully-connected layers
with ReLU non-linearities, while both P and O
have two. All hidden layers contain 900 hidden
units. Batch Normalization (Ioffe and Szegedy,
2015) is used in each hidden layer in P and Q.
F does not use batch normalization. F and P
are optimized jointly using Adam (Kingma and
Ba, 2015) with a learning rate of 0.0005. Q
is trained with another Adam optimizer with the
same learning rate. The weights of Q are clipped
to [—0.01,0.01]. We train ADAN for 30 epochs
and use early stopping to select the best model
on the validation set. ADAN is implemented in
PyTorch (Paszke et al., 2017).
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4 Related Work

Cross-lingual Sentiment Classification is moti-
vated by the lack of high-quality labeled data in
many non-English languages (Bel et al., 2003; Mi-
halcea et al., 2007; Banea et al., 2008, 2010; Soyer
et al., 2015). For Chinese and Arabic in particular,
there are several representative works (Wan, 2008,
2009; He et al., 2010; Lu et al., 2011; Mohammad
et al., 2016). Our work is comparable to these in
objective but very different in method. The work
by Wan uses machine translation to directly con-
vert English training data to Chinese; this is one
of our baselines. Lu et al. (2011) instead uses
labeled data from both languages to improve the
performance on both. Other papers make direct
use of a parallel corpus either to learn a bilingual
document representation (Zhou et al., 2016) or to
conduct cross-lingual distillation (Xu and Yang,
2017). Zhou et al. (2016) require the translation of
the entire English training set which is prohibitive
for our setting, while ADAN outperforms Xu and
Yang (2017)’s approach in our experiments.
Domain Adaptation tries to learn effective clas-
sifiers for which the training and test samples
are from different underlying distributions (Blitzer
et al., 2007; Pan et al., 2011; Glorot et al., 2011;
Chen et al., 2012; Liu et al., 2015). This can
be thought of as a generalization of cross-lingual
text classification. However, one main difference
is that, when applied to text classification tasks,
most of these domain adaptation work assumes
a common feature space such as a bag-of-words
representation, which is not available in the cross-
lingual setting. See Section 3.2 for experiments
on this. In addition, most works in domain adap-
tation evaluate on adapting product reviews across
domains (e.g. books to electronics), where the di-
vergence in distribution is less significant than that
between two languages.

Adversarial Networks have enjoyed much suc-
cess in computer vision (Goodfellow et al., 2014;
Ganin et al., 2016). A series of work in image gen-
eration has used architectures similar to ours, by
pitting a neural image generator against a discrim-
inator that learns to classify real versus generated
images (Goodfellow et al., 2014). More relevant
to this work, adversarial architectures have pro-
duced the state-of-the-art in unsupervised domain
adaptation for image object recognition: Ganin
et al. (2016) train with many labeled source im-
ages and unlabeled target images, similar to our



setup. In addition, other recent work (Arjovsky
et al., 2017; Gulrajani et al., 2017) proposes im-
proved methods for training Generative Adversar-
ial Nets. In a preliminary version of the current
work (Chen et al., 2016), we proposed language-
adversarial training, the first adversarial neural
net for cross-lingual NLP. As of the writing of
this journal paper, there are several other recent
works that adopt adversarial training for cross-
lingual NLP tasks, such as cross-lingual text clas-
sification (Xu and Yang, 2017), cross-lingual word
embedding induction (Zhang et al., 2017; Lample
et al., 2018) and cross-lingual question similarity
reranking (Joty et al., 2017).

5 Conclusion and Future Work

In this work, we presented ADAN, an adversar-
ial deep averaging network for cross-lingual senti-
ment classification. ADAN leverages the abundant
labeled resources from English to help sentiment
classification on other languages where little or no
annotated data exist. We validate ADAN’s effec-
tiveness by experiments on Chinese and Arabic
sentiment classification, where we have labeled
English data and only unlabeled data in the target
language. Experiments show that ADAN outper-
forms several baselines including domain adapta-
tion models, a competitive MT baseline, and state-
of-the-art cross-lingual text classification meth-
ods. We further show that even without any bilin-
gual resources, ADAN trained with randomly ini-
tialized embeddings can still achieve encouraging
performance. In addition, we show that in the
presence of labeled data in the target language,
ADAN can naturally incorporate this additional su-
pervision and yields even more competitive re-
sults.

For future work, we plan to apply our language-
adversarial training framework to other NLP adap-
tation tasks where explicit MLE training is not fea-
sible due to the lack of direct supervision. Our
framework is not limited to sentiment classifica-
tion or even to generic text classification: It can
be applied, for example, to phrase-level tagging
tasks (Irsoy and Cardie, 2014) where labeled data
might not exist for certain languages. In another
direction, we can look beyond a single SOURCE
and TARGET language and utilize our adversarial
training framework for multi-lingual text classifi-
cation.
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